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What causes negative loss factors in measuring SEA parameters by the power injection
method? Analytical results in this paper show that negative loss factors are caused by
non-conservative coupling, and non-conservative coupling does not always increase the
effective internal loss factors (EILFs). To study the power flow of non-conservatively
coupled systems, some new SEA models for non-conservatively coupled systems were
suggested by researchers. However, the SEA parameters for non-conservatively coupled
systems have not been extensively discussed by using the model of classical Statistical
Energy Analysis (CSEA) up to now. The aim of this study is to give insight into the problem
of the energy balance mechanism of non-conservatively coupled systems by using both the
model and the energy balance equations in CSEA. A method of calculating EILFs and
couplings loss factors (CLFs) for non-conservatively coupled machine structures is
introduced. The possibility of causing negative loss factor is investigated by analysis of two
non-conservatively coupled oscillators. Furthermore, the influences of the coupling stiffness
and the coupling damping on EILFs and (CLFs) are investigated in detail. Finally, an
application example is included to demonstrate the accuracy of the method.
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1. INTRODUCTION

Statistical Energy Analysis (SEA) is an approach for analysis of random vibration of
structures. In previous decades, it has been widely applied to the prediction of responses
and control of mechanical noise and vibration. However, as Fahy [1] pointed out, strictly
speaking, the energy balance equations for two coupled oscillators cannot be extended to
more than two coupled oscillators because a simple condition of a linear chain of three
oscillators, with external power supplied only to oscillator 1, indicates that the uncoupled
modal energies of both oscillators 2 and 3 are zero, and hence no power will flow from
oscillator 2 to oscillator 3. Therefore, it would cause serious errors to extend energy
balance equations of two conservatively coupled oscillators randomly.

As one knows, in classical SEA, internal loss factor (ILF) represents the ability of a
structure to dissipate its vibration energy; and coupling loss factor (CLF) represents the
characteristic of energy transmission between physically coupled structures. However,
neither ILF nor CLF includes the energy loss of the non-conservative coupling of the
boundary.

For non-conservatively coupled systems, Chow and Pinnington [2] suggested that the
loss of coupling damping of boundary be added to structural ILFs, so that the energy
balance equations of conservatively coupled systems would be suitable for non-conserva-
tively coupled systems. Recently, Beshara and Keane [3] introduced a new model and a
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new parameter named coupling damping loss factor for non-conservatively coupled
systems showed that the coupling damping loss factor is an additional item which increases
the ILFs of susbsystems.

Does non-conservative coupling always increase ILFs? Is there any influence of
non-conservative coupling on CLFs? These questions attracted little attention till the
negative ILFs were obtained by measurement using the power injection method [4–6].

In general, the non-conservative coupling affects both the ILFs and the CLFs. The loss
of coupling damping is not proportionally added to the two coupled structures; and the
CLFs are different from that of conservatively coupled systems. In what follows, the energy
balance mechanism of non-conservatively coupled systems is investigated by using both
the model and the enery balance equations in CSEA. To make a distinction from the ILFs
of CSEA, the ILFs of non-conservatively coupled system are named the effective internal
loss factors (EILFs). In the first half of this paper, the theoretical analysis of the ILFs and
the CLFs of non-conservatively coupled structures are presented, and the engineering
calculations of EILFs and CLFs are introduced; in the latter half, a model of two
non-conservatively coupled oscillators is introduced to analyze the cause of negative
EILFs, and the influence of non-conservative coupling on the ILFs and the CLFs are
studied in detail. Finally, to demonstrate the accuracy of the method presented in this
paper, an application example is included.

2. THEORETICAL ANALYSIS

Figure 1 shows the models of the two substructures system that have been analyzed. The
energy balance equations of the substructures are

P1 =P1d +PI
12 −PI

21 =v1h1E1 +v1h
I
12E1 −v2h

I
21E2,

P2 =P2d +PII
21 −PII

12 =v2h2E2 +v2h
II
21E2 −v1h

II
12E1, (1)

where P1d and P2d are powers dissipated by substructure 1 and 2 respectively, Pid =vihiEi

(i=1, 2). hi is determined by structural internal damping; Ei symbolizes the time-space
averaged energy of substructure i; vi is the ‘‘blocked’’ frequency of oscillator i [7].

The energy transmissions that occurred in boundary I are, PI
12 =v1h

I
12E1 and

PI
21 =v2h

I
21E2. Note that PI

12 is the power flow from substructure 1 to boundary I and PI
21

is the power flow from boundary I to substructure 1. Similarly, the energy transmissions
that occur in boundary II are PII

12 =v1h
II
12E1 and PII

21 =v2h
II
21E2.

Figure 2 shows the SEA model of the non-conservatively coupled structures analyzed.

Figure 1. Model of two non-conservatively coupled structures.
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Figure 2. The SEA model of two non-conservatively coupled structures.

Using the form of energy balance equations of CSEA, and marking EILF as h'i , CLF
as h'ij , the energy balance equations of non-conservatively coupled systems could be
expressed as

P1 =v1h'1E1 +v1h'12E1 −v2h'21E2,

P2 =v2h'2E2 +v2h'21E2 −v1h'12E1, (2)

Comparing equations (1) with equations (2) gives

h'12 = hII
12, h'21 = hI

21, h'1 = h1 + (hI
12 − hII

12), h'2 = h2 + (hII
21 − hI

21) (3)

It can be found that h'12 and h'21 are just hII
12 and hI

21 respectively (see Figure 1), which is
expected. h'1 includes the internal loss of substructure 1 and an item which symbolizes loss
of non-conservative coupling. Similarly, h'2 is the sum of ILF of substructure 2 and
non-conservative coupling loss (hII

21 − hI
21). It can be proved that, for conservatively coupled

systems, hI
12 − hII

12 = hII
21 − hI

21 =0.
Since EILF is an important parameter in SEA, how to calculate EILF becomes the key

of the problem. When substructures 1 and 2 are excited by the external force respectively,
equations (2) are reduced to

h'12 = (v2/v1)E(1)
21 hs2/(1−E(1)

21 E(2)
12 ), h'21 = (v1/v2)E(2)

12 hs1/(1−E(1)
21 E(2)

12 ),

h'1 = (v2/v1)E(2)
21 h'21 − h'12, h'2 = (v1/v2)E(1)

12 h'12 − h'21, (4)

where E(1)
21 symbolizes the energy ration E2/E1 when only substructure 1 is excited. Similarly,

E(2)
12 symbolizes the energy ratio E1/E2 when only substructure 2 is excited. hsi =Pi /vEi

(i=1, 2) is the total loss factor of coupled structure i. hsi and E(j)
ij can be measured by the

power injection method [6]. The total loss factors and energy ratios could also be calculated
as follows.

For a continuous structure, taking SEA parameters as the statistical average parameters
in frquency band Df of which the center frequency is f, then equations (4) become the
expression of the CLFs and EILFs for non-conservatively coupled continuous structures.
The energy ratio of the non-conservatively coupled continuous structures becomes the key
to calculate the EILFs and the CLFs. Usually energy ratios can be expressed as [8],

E(2)
12 =

4G1G2

vn2h1

1
=Y1 +Y2 +Yc =2

, E(1)
21 =

4G1G2

vn1h2

1
=Y1 +Y2 +Yc =2

, (5)

where G1 and G2, n1 and n2 are the averge admittances and modal densities of substructure
1 and 2 respectively. Y1 and Y2 are input point mobilities of substructure 1 and 2
respectively. Yc is the mobility of coupling elements, Yc =jv/K, and K is the complex
stiffness of the coupling element [8]. The coupled structures are as shown in Figure 3.
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Figure 3. Two non-conservatively coupled machine structures.

Similarly, the total loss factors are deduced:

hs1 = h1 b1−
y2

1

Y1(Y1 +Y2 +Yc )b>b1−
y1

Y1 +Y2 +Ycb
2

,

hs2 = h2 b1−
y2

2

Y2(Y1 +Y2 +Yc )b>b1−
y2

Y1 +Y2 +Ycb
2

, (6)

where, yi is the transfer mobility of structure i, i=1, 2. hi is the ILF of structure i. The
relationship between yi and Gi were given by Lyon [9].

Substituting equations (5) and (6) into equations (4), the EILFs and CLFs of the
non-conservatively coupled continuous structures could be obtained.

3. STUDY ON NON-CONSERVATIVELY COUPLED OSCILLATORS

It is difficult to analyze the influence of the coupling damping and the coupling stiffness
on the EILFs and CLFs for continuous structures quantitatively. Therefore, a model of
two non-conservatively coupled oscillators is introduced.

Figure 4 shows the analyzed two oscillators system. The vibration responses of the
system are given by

m1ẍ1 + c1ẋ1 + c3(ẋ1 − ẋ2)+ k1x1 + k3(x1 − x2)=F1,

m2ẍ2 + c2ẋ2 + c3(ẋ2 − ẋ1)+ k2x2 + k3(x2 − x1)=F2, (7)

where mj , kj , cj symbolize the mass, stiffness and damping of oscillator j respectively.

Figure 4. Model of two non-conservatively coupled oscillators.
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Figure 5. The influence of c3 on h'1 (k3 =50 N/m): c3 values; ——, 0·0; ---, 1·5; ...., 5·0; — —, 10; –-–, 25.

In order for convenient expression, the following parameters are introduced:

v1 =z(k1 + k3)/m1, v2 =z(k2 + k3)/m2, D1 =z(c1 + c3)/m1,

D2 = (c2 + c3)/m2, m= c3/zm1m2, n= k3/zm1m2,

A=(v2
1 −v2)(v2

2 −v2)−v2D1D2 − n2 +v2m2,

B=(v2
1 −v2)D2 + (v2

2 −v2)D1 −2mn.

According to the definition of ILF,

h1 =P1d /v1E1 = c1/v1m1, h2 =P2d /v2E2 = c2/v2m2. (8)

By considering that oscillators 1 and 2 are excited, respectively, it can be deduced that,

E(1)
12 = [(v2

2 −v2)2 +v2D2
2 ]/(n2 +v2m2), E(2)

21 = [(v2
1 −v2)2 +v2D2

1 ]/(n2 +v2m2), (9)

h'12 =
1
v

v2

v1

(n2 +v2m2)[(v2
1 −v2)B−D1A]

[(v2
1 −v2)2 +v2D2

1 ][(v2
2 −v2)2 +v2D2

2 ]− (n2 +v2m2)2 (10.1)

h'21 =
1
v

v1

v2

(n2 +v2m2)[(v2
2 −v2)B−D2A]

[(v2
1 −v2)2 +v2D2

1 ][(v2
2 −v2)2 +v2D2

2 ]− (n2 +v2m2)2 (10.2)

Substituting equtions (9) and equations (10) into equations (4), EILFs are obtained.

Figure 6. The influence of c3 on h'2 (k3 =50 N/m). Key as for Figure 5.
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Figure 7. The influence of k3 on h'1 (c3 =10 Ns/m): k3 values; ——, 20; ---, 50; ····, 100; — —, 120.

It is still difficult to analyze the influence of the coupling stiffness and the coupling
damping on the EILFs and CLFs directly from equations (10) theoretically. Therefore
numerical calculations have to be carried out. In the following analysis, parameters of
oscillators are fixed. That is, m1 =1·5 kg, k1 =400 N/m, c1 =0·5 Ns/m, m2 =2 kg,
k2 =200 N/m, c2 =1·0 Ns/m.

Figures 5 and 6 show the influence of the coupling damping on the EILFs. Affected by
the non-conservative coupling, h'1 varies greatly near v2. When the driving frequency is
a little lower than v2, h'1 shows a valley. As the driving frequency increases, the valley
becomes obvious, and even assumes negative values; when the driving frequency is a little
higher than v2, h'1 shows a peak, and the greater the damping, the higher the peak, until
it exceeds 1. The curve of h'2 is similar to the curve of h'1 , but the valley of h'2 corresponds
to the peak of h'1 . The law of the EILFs changes with the driving frequency is: the larger
the coupling damping, the greater the EILFs change, and the easier for the EILFs to be
grater than 1 or smaller than 0. As expected, in the range far away from resonance
frequencies, the EILFs increase as the driving frequency increases. Furthermore,
contrasting Figure 5 with Figure 6, it is shown that h'1 and h'2 would not both be negative
at the same time. However, they will both be greater than 1 if the coupling damping is
large enough. In fact, because of the use of the form of the energy balance equations of
conservatively coupled systems for the non-conservatively coupled ones, it is an inevitable
result of the energy balance.

Figures 7 and 8 show the influence of the coupling stiffness on the EILFs. It is shown
that the larger the coupling damping, the greater the EILFs drop from peak to valley,
which illustrates that the function of coupling stiffness to the change of the EILFs can be

Figure 8. The influence of k3 on h'2 (c3 =10 Ns/m). Key as for Figure 7.
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Figure 9. The influence of k3 on h'12 (c3 =10 Ns/m). Key as for Figure 7.

Figure 10. The influence of k3 on h'21 (c3 =10 Ns/m). Key as for Figure 7.

Figure 11. The influence of c3 on h'12 (k3 =50 N/m). Key as for Figure 5

considered as ‘‘catalyzing’’. ‘‘Catalyzing’’ becomes more serious when the coupling stiffness
increases. Furthermore, the valley of h'2 corresponds to the peak of h'1 .

Figures 9 and 10 show the influence of the coupling stiffness on CILFs. It is shown that
the maximum CLF occurs in the resonance frequency of the reaching oscillator, and energy
transmission is relatively critical around the resonance frequencies of the coupled
oscillators. This law is familiar to the authors [10].

Little is known of the influences of the coupling damping on the CLFs, which are shown
in Figures 11 and 12. The curves show sharp peaks in the resonance frequencies of the
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Figure 12. The influence of c3 on h'21 (k3 =50 N/m). Key as for Figure 7.

Figure 13. Experimental system.

Figure 14. Variation in the energy ratio of plates with frequency: —, predicted; W, measured.

oscillators when the two oscillators are conservatively coupled. It illustrates that the
coupled oscillators absorbs a lot of energy from the physically linked oscillator at its
resonance frequency. This law is still true for non-conservative coupling, but the peak is
smoother. It is also found that the greater the coupling damping, the bigger the CLFs,
which means that the function of the coupling damping in the increase of the CLFs can
also be considered as ‘‘catalyzing’’.
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Figure 15. Variation in CLF with frequency. ——, predicted; –·–, measured.

Figure 16. Variation in EILF with frequency. Key as for Figure 15.

4. A REAL EXAMPLE

To verify this the approach to the evaluation of the energy ratios, the EILFs and the
CLFs for non-conservatively coupled structures, experimental data are obtained and
compared with the predicted results.

The experimental system is made of two steel plates, the thicknesses of which are 2 mm
and 4 mm, and both plates are 500 mm×500 mm. Three isolators are stuck between the
two plates. The plates are slightly damped with damping material to increase the ILFs.
Thus, high precision is possible in measuring the ILFs. The experimental system is as
shown in Figure 13. Only flexural wave is considered in this model.

The measured and calculated energy ratios are compared in Figure 14. It is found that
the measured results agree well with the theoretical data, even in low frequency.

Figures 15 and 16 give curves of h'12 and h'1 respectively. The tested CLF agrees with the
calculated CLF for the middle and high frequencies. There are some differences between
the measured and predicted CLFs at low frequencies, which is acceptable in SEA. The
measured and predicted ILFs also have an identical tendency.

5. CONCLUSIONS

The theoretical and numerical analyses of the two non-conservatively coupled oscillators
illustrate that it should no longer be unexpected to obtain abnormal values of ILFs by
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the power injection method. Combining the analysis of the two non-conservatively coupled
oscillators, and the real example provided, the following conclusions can be drawn:

(1) The EILFs of the non-conservatively coupled system include not only structural
internal losses, but also loss of the coupling. For conservatively coupled system, the EILFs
equal the ILFs.

(2) The peaks and valleys of the EILFs and the CLFs are formed when the driving
frequency is near to the resonance frequency.

(3) The peaks and valleys of the EILFs and the CLFs become obvious when the coupling
damping increases, and it is possible for EILFs to be greater than 1 or smaller than 0; when
the driving frequency is far away from the resonance frequencies, the EILFs increase as the
coupling damping increases.

(4) The coupling stiffness has a ‘‘catalyzing’’ function in the change of the EILFs.
‘‘Catalyzing’’ is serious when the coupling stiffness increases.

(5) The coupling damping acts as ‘‘catalyzing’’ to the change of the CLFs. ‘‘Catalyzing’’
is serious when the coupling damping increases.

(6) The accuracy of the method for engineering applications is demonstrated by a real
example.
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